793 research outputs found

    Neutron scattering study on spin correlations and fluctuations in the transition-metal-based magnetic quasicrystal Zn-Fe-Sc

    Full text link
    Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a QQ-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature Tf≃7T_{\rm f} \simeq 7 K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below TfT_{\rm f}.Comment: To be published in Phys. Rev.

    Bin Packing Problem with uncertainty on item availability: an application to Capacity Planning in Logistics

    Get PDF
    Most modern companies are part of international economic networks, where goods are produced under different strategies, then transported over long distances and stored for variable periods of time at different locations along the considered network. These activities are often performed by first consolidating goods in appropriate bins, which are then stored at warehouses and shipped using multiple vehicles through various transportation modes. Companies thus face the problem of planning for sufficient capacity, e.g., negotiating it with third party logistic firms (3PLs) that specify both the capacity to be used and the logistical services to be performed. Given the time lag that usually exists between the capacity-planning decisions and the operational decisions that define how the planned capacity is used, the common assumption that all information concerning the parameters of the model is known is unlikely to be observed. We therefore propose a new stochastic problem, named the Variable Cost and Size Bin Packing Problem with Stochastic Items. The problem considers a company making a tactical capacity plan by choosing a set of appropriate bins, which are defined according to their specific volume and fixed cost. Bins included in the capacity plan are chosen in advance without the exact knowledge of what items will be available for the dispatching. When, during the operational phase, the planned capacity is not sufficient, extra capacity must be purchased. An extensive experimental plan is used to analyze the impact that diversity in instance structure has on the capacity planning and the effect of considering different levels of variability and correlation of the stochastic parameters related to items

    Octahedral Tilt Instability of ReO_3-type Crystals

    Full text link
    The octahedron tilt transitions of ABX_3 perovskite-structure materials lead to an anti-polar (or antiferroelectric) arrangement of dipoles, with the low temperature structure having six sublattices polarized along various crystallographic directions. It is shown that an important mechanism driving the transition is long range dipole-dipole forces acting on both displacive and induced parts of the anion dipole. This acts in concert with short range repulsion, allowing a gain of electrostatic (Madelung) energy, both dipole-dipole and charge-charge, because the unit cell shrinks when the hard ionic spheres of the rigid octahedron tilt out of linear alignment.Comment: 4 page with 3 figures included; new version updates references and clarifies the argument

    Discrete Painlevé equations from Y-systems

    Get PDF
    We consider T-systems and Y-systems arising from cluster mutations applied to quivers that have the property of being periodic under a sequence of mutations. The corresponding nonlinear recurrences for cluster variables (coefficient-free T-systems) were described in the work of Fordy and Marsh, who completely classified all such quivers in the case of period 1, and characterized them in terms of the skew-symmetric exchange matrix B that defines the quiver. A broader notion of periodicity in general cluster algebras was introduced by Nakanishi, who also described the corresponding Y-systems, and T-systems with coefficients. A result of Fomin and Zelevinsky says that the coefficient-free T-system provides a solution of the Y-system. In this paper, we show that in general there is a discrepancy between these two systems, in the sense that the solution of the former does not correspond to the general solution of the latter. This discrepancy is removed by introducing additional non-autonomous coefficients into the T-system. In particular, we focus on the period 1 case and show that, when the exchange matrix B is degenerate, discrete Painlev\'e equations can arise from this construction

    Precision Measurements of Little Higgs Parameters at the International Linear Collider

    Full text link
    We investigate a possibility of precision measurements for parameters of the Littlest Higgs model with T-parity at the International Linear Collider (ILC). The model predicts new gauge bosons (AH, ZH, and WH), among which the heavy photon (AH) is a candidate for dark matter. The masses of these new gauge bosons strongly depend on the vacuum expectation value that breaks a global symmetry of the model. Through Monte Carlo simulations of the processes: e+ e- ->AH ZH and e+ e- -> WH+ WH-, we show how precisely the masses can be determined at the ILC for a representative parameter point of the model. We also discuss the determination of the Little Higgs parameters and its impact on the future measurement of the thermal abundance of the dark matter relics in our universe.Comment: 22 pages, 10 figures, 6 tabl

    Spin versus Lattice Polaron: Prediction for Electron-Doped CaMnO3

    Full text link
    CaMnO3 is a simple bi-partite antiferromagnet(AF) which can be continuously electron-doped up to LaMnO3. Electrons enter the doubly degenerate E_g subshell with spins aligned to the S=3/2 core of Mn^4+ (T_2g^3)$. We take the Hubbard and Hund energies to be effectively infinite. Our model Hamiltonian has two E_g orbitals per Mn atom, nearest neighbor hopping, nearest neighbor exchange coupling of the S=3/2 cores, and electron-phonon coupling of Mn orbitals to adjacent oxygen atoms. We solve this model for light doping. Electrons are confined in local ferromagnetic (FM) regions (spin polarons) where there proceeds an interesting competition between spin polarization (spin polarons) which enlarges the polaron, and lattice polarization (Jahn-Teller polarons) which makes it smaller. A symmetric 7-atom ferromagnetic cluster (Mn_7^27+) is the stable result, with net spin S=2 relative to the undoped AF. The distorted oxygen positions around the electron are predicted. The model also predicts a critical doping x_c=0.045 where the polaronic insulator becomes unstable relative to a FM metal.Comment: 9 pages with 7 embedded postscript figures and 2 table

    A42F-03: Small-Scale Variability in Tropical Tropopause Layer Humidity

    Get PDF
    Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment (ATTREX) over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about minus 5 divided by 3, to minus 2
    • 

    corecore